By Topic

Standing Waves along a Microwave Generated Surface Wave Plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Two surface wave plasma columns, generated by microwave power in argon at gas pressures of 0.05 torr to 330 torr, interact in the same discharge tube to form standing surface waves. Radial electric field Er and azimuthal magnetic field H¿ outside the discharge tube are measured to be 90° out of phase with respect to axial position and to decay exponentially with radial distance from the tube axis. Maximum light emission occurs at the position of maximum H¿, and minimum Er. Electron temperature and density are measured at low pressures with double probes inserted into the plasma at a null of Er. Measured electron densities compare well with those predicted by Gould-Trivelpiece (GT) surface wave theory. Measured electron temperatures are the same order of magnitude as temperatures predicted by positive column theory.

Published in:

IEEE Transactions on Plasma Science  (Volume:10 ,  Issue: 1 )