By Topic

Graded-SiGe-base, poly-emitter heterojunction bipolar transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Patton, Gary L. ; IBM T.J. Watson Res. Center, Yorktown Heights, NY, USA ; Harame, D.L. ; Stork, J.M.C. ; Meyerson, B.S.
more authors

Si/Si/sub 1-x/Ge/sub x/ heterojunction bipolar transistors (HBTs) fabricated using a low-temperature epitaxial technique to form the SiGe graded-bandgap base layer are discussed. These devices were fabricated on patterned substrates and subjected to annealing cycles used in advanced bipolar processing. These devices, which have base widths under 75 mm, were found to have excellent junction qualities. Due to the small bandgap of SiGe, the collector current at low bias is ten times higher than that for Si-base devices that have a pinched base resistance. This collector current ratio increases to more than 40 at LN/sub 2/ temperature resulting in current gains of 1600 for the SiGe-base transistors despite base sheet resistances as low as 7.5 k Omega / Square Operator .<>

Published in:

Electron Device Letters, IEEE  (Volume:10 ,  Issue: 12 )