By Topic

Small-geometry, high-performance, Si-Si/sub 1-x/Ge/sub x/ heterojunction bipolar transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kamins, T.I. ; Hewlett-Packard Co., Palo Alto, CA, USA ; Nauka, K. ; Kruger, James B. ; Hoyt, J.L.
more authors

Si-Si/sub 1-x/Ge/sub x/ heterojunction bipolar transistors (HBTs) with very heavily doped bases, fabricated using electron-beam lithography to obtain very small feature sizes, are discussed. Emitter, base, and collector epitaxial layers were grown in situ in a lamp-heated, chemical-vapor-deposition reactor. Transistors with common-emitter current gain of approximately 50 and f/sub t/ of about 28 GHz have been obtained. Analysis indicates that the frequency response is limited by parasitic resistances and capacitances in the simple demonstration structure used, rather than by the intrinsic device characteristics. Simple ring oscillators have been fabricated using HBTs in the inverse-active mode of operation.<>

Published in:

Electron Device Letters, IEEE  (Volume:10 ,  Issue: 11 )