By Topic

Recursive Prediction Error Methods for Adaptive Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Convenient recursive prediction error algorithms for identification and adaptive state estimation are proposed, and the convergence of these algorithms to achieve off-line prediction error minimization solutions is studied. To set the recursive prediction error algorithms in another perspective, specializations are derived from significant simplifications to a class of extended Kalman filters. The latter are designed for linear state space models with the unknown parameters augmenting the state vector and in such a way as to yield good convergence properties. Also, specializations to approximate maximum likelihood recursions, Kalman filters with adaptive gains, and connections to the extended least squares algorithms are noted.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:9 ,  Issue: 4 )