By Topic

Prototype classification and feature selection with fuzzy sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The fuzzy ISODATA algorithms are used to address two problems: first, the question of feature selection for binary valued data sets is investigated; and second, the same method is applied to the design of a fuzzy one-nearest prototype classifier. The efficiency of this fuzzy classifier is compared to conventional k-NN classifiers by a computational example using the stomach disease data of Scheinok and Rupe, and Toussaint's method for estimation of the probability of misclassification: the fuzzy prototype classifier appears to decrease the error rate expected from all k-NN classifiers by roughly ten per cent.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:7 ,  Issue: 2 )