By Topic

Topological Fuzzy Sets as a Quantitative Description of Analogical Inference and Its Application to Question-Answering Systems for Information Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In human communication, analogical inference plays an important role in forming useful judgements from uncertain and incomplete information. Implementation of such ability of inference in computers is significant to increase the efficiency of the question-answering process in information retrieval systems. A new notion of topological fuzzy sets is introduced to describe analogical inference based on association between concepts quantitatively. Based on the above idea, a question-answering system for information retrieval is proposed where a computer learns users' subjects of interest. In the learning process the computer puts questions so as to reduce the fuzziness of its recognition on the users' subjects. Finally, we implemented the system and, using it, the effect of the analogical inference on the efficiency of the learning is investigated.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:12 ,  Issue: 2 )