By Topic

Filtering and Smoothing for Linear Discrete-Time Distributed Parameter Systems Based on Wiener-Hopf Theory with Application to Estimation of Air Pollution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Optimal filtering and smoothing algorithms for linear discrete-time distributed parameter systems are derived by a unified approach based on the Wiener-Hopf theory. The Wiener-Hopf equation for the estimation problems is derived using the least-squares estimation error criterion. Using the basic equation, three types of the optimal smoothing estimators are derived, namely, fixed-point, fixed-interval, and fixed-lag smoothers. Finally, the results obtained are applied to estimation of atmospheric sulfur dioxide concentrations in the Tokushima prefecture of Japan.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:11 ,  Issue: 12 )