By Topic

Interpolation from Samples on a Linear Spiral Scan

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

An interpolation method useful for reconstructing an image from its Fourier plane samples on a linear spiral scan trajectory is presented. This kind of sampling arises in NMR imaging. We first present a theorem that enables exact interpolation from spiral samples to a Cartesian lattice. We then investigate two practical implementations of the theorem in which a finite number of interpolating points are used to calculate the value at a new point. Our experimental results confirm the theorem's validity and also demonstrate that both practical implementations yield very good reconstructions. Thus, the theorem and/or its practical implementations suggest the possibility of using direct Fourier reconstruction from linear spiral-scan NMR imaging.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:6 ,  Issue: 3 )