Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Towards the Definition of Optimum Sensor Specifications for Microwave Remote Sensing of Snow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The interaction of nicrowaves with snow strongly depends on parameters such as snow wetness and the size and structure of snow grains. Therefore microwave radiometry and scatterometry are excellent tools for remote sensing of the snowcover. Multifrequency radiometry can be used to classify snow as was shown with ground-based measurements of the period April-June 1977 at a high altitude Alpine test site. The continuation of the measurement program yielded data of 3 additional snow seasons with widely varying snow conditions, therefore the present information has become representative for alpine regions. Relationships between the brightness temperature and the water equivalents show a similar variation with snow type as in other snow regions, so that the range of validity of our data set is not restricted to the Alps. The problem of discriminating regions of wet snow from snow-free land is found to be solvable with microwave scatterometry. Two cluster analyses in factorial spaces of both the ground truth and the microwave data sets demonstrate the potential of microwave sensors to classify snow which is a prerequisite for snow algorithms retrieving hydrologic parameters. The results are used to define sensor specifications with optimum sensitivity for microwave remote sensing of snow.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:GE-20 ,  Issue: 1 )