By Topic

Robust Filtering for Linear Time-Invariant Continuous Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Neveux, P. ; Univ. d''Avignon et des Pays de Vaucluse, Avignon ; Blanco, Eric ; Thomas, G.

The problem of robust filtering for linear time-invariant (LTI) continuous systems subject to parametric uncertainties is treated in this paper through transfer function and polynomial representations, and then in the state-space domain. The basic idea consists of introducing the gradient of the estimation error with respect to the uncertain parameters in the optimization scheme via a epsiv-contaminated model. The general solution to the problem is given in the transfer function representation while, in the polynomial framework, the causal estimator is obtained by means of a spectral factorization and a Diophantine equation. The state-space realization of the causal estimator is discussed. Examples show the ability of the proposed technique to provide a reliable estimation in presence of model uncertainty.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 10 )