By Topic

Cognitive multiple access via cooperation: Protocol design and performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sadek, A.K. ; Qualcomm Inc., San Diego, CA, USA ; Liu, K.J.R. ; Ephremides, A.

In this paper, a novel cognitive multiple-access strategy in the presence of a cooperating relay is proposed. Exploiting an important phenomenon in wireless networks, source burstiness, the cognitive relay utilizes the periods of silence of the terminals to enable cooperation. Therefore, no extra channel resources are allocated for cooperation and the system encounters no bandwidth losses. Two protocols are developed to implement the proposed multiple-access strategy. The maximum stable throughput region and the delay performance of the proposed protocols are characterized. The results reveal that the proposed protocols provide significant performance gains over conventional relaying strategies such as selection and incremental relaying, specially at high spectral efficiency regimes. The rationale is that the lossless bandwidth property of the proposed protocols results in a graceful degradation in the maximum stable throughput with increasing the required rate of communication. On the other hand, conventional relaying strategies suffer from catastrophic performance degradation because of their inherent bandwidth inefficiency that results from allocating specific channel resources for cooperation at the relay. The analysis reveals that the throughput region of the proposed strategy is a subset of its maximum stable throughput region, which is different from random access, where both regions are conjectured to be identical.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 10 )