Cart (Loading....) | Create Account
Close category search window
 

Evaluation of Power Losses in a Boost PFC Unit by Temperature Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Viswanathan, K. ; Nat. Univ. of Singapore, Singapore ; Oruganti, R.

High power conversion efficiency is an important requirement of the front-end power-factor-corrected (PFC) boost rectifier that is used in shaping the ac input current in a typical modern switch-mode power supply. A reasonably accurate estimate of the power losses in individual components is essential in order to improve the efficiency of the PFC rectifier. In this paper, difficulties in the measurement of individual component power losses with particular reference to an ac-dc converter are brought out. A method of loss evaluation by measurement of temperatures of individual components and surrounding ambient is presented. Experimental results that are carried out on the front-end boost PFC rectifier of a commercial ac-dc converter are presented to validate the loss estimation method.

Published in:

Industry Applications, IEEE Transactions on  (Volume:43 ,  Issue: 5 )

Date of Publication:

Sept.-oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.