By Topic

Two-Phase SRM With Flux-Reversal-Free Stator: Concept, Analysis, Design, and Experimental Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seok-Gyu Oh ; Jinju Nat. Univ., Jinju ; R. Krishnan

The demand for high-efficiency electric motor drives at low cost is increasing, particularly, in high-volume applications, such as household appliances. Single- and two-phase machines are viable under such constraints. Between them, two-phase switched reluctance motor drives are preferred from the viewpoint of performance. This paper presents a novel two-phase switched reluctance machine (TPSRM) that is conceived for high-efficiency operation and full-load starting performance for any initial rotor position. The principle of operation of the proposed TPSRM and its unique features such as the flux-reversal-free stator for reducing core losses, the utilization of only two thirds of the stator core for each phase operation, and the resulting low noise are presented. The machine is analyzed with the 2-D finite-element analysis method. Self-starting in the proposed machine is developed with rotor pole shaping, and a unique technique to provide the desired torque characteristics is described. The effect of varying pole arcs, the number of turns per pole, asymmetric pole placement, and rotor pole shaping on torque and phase inductance is evaluated to find the best machine dimensions for a required performance as well as to understand qualitatively the influence of each variable on the machine performance. Experimental results from a 2.2-hp laboratory prototype correlate the performance predictions and validate the claims for this novel TPSRM.

Published in:

IEEE Transactions on Industry Applications  (Volume:43 ,  Issue: 5 )