By Topic

Integrating Face and Gait for Human Recognition at a Distance in Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoli Zhou ; California Univ., Riverside ; Bhanu, B.

This paper introduces a new video-based recognition method to recognize noncooperating individuals at a distance in video who expose side views to the camera. Information from two biometrics sources, side face and gait, is utilized and integrated for recognition. For side face, an enhanced side-face image (ESFI), a higher resolution image compared with the image directly obtained from a single video frame, is constructed, which integrates face information from multiple video frames. For gait, the gait energy image (GEI), a spatio-temporal compact representation of gait in video, is used to characterize human-walking properties. The features of face and gait are obtained separately using the principal component analysis and multiple discriminant analysis combined method from ESFI and GEI, respectively. They are then integrated at the match score level by using different fusion strategies. The approach is tested on a database of video sequences, corresponding to 45 people, which are collected over seven months. The different fusion methods are compared and analyzed. The experimental results show that: 1) the idea of constructing ESFI from multiple frames is promising for human recognition in video, and better face features are extracted from ESFI compared to those from the original side-face images (OSFIs); 2) the synchronization of face and gait is not necessary for face template ESFI and gait template GEI; the synthetic match scores combine information from them; and 3) an integrated information from side face and gait is effective for human recognition in video.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 5 )