By Topic

A New Crossover Operator in Genetic Programming for Object Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mengjie Zhang ; Victoria Univ., Wellington ; Xiaoying Gao ; Weijun Lou

The crossover operator has been considered ldquothe centre of the stormrdquo in genetic programming (GP). However, many existing GP approaches to object recognition suggest that the standard GP crossover is not sufficiently powerful in producing good child programs due to the totally random choice of the crossover points. To deal with this problem, this paper introduces an approach with a new crossover operator in GP for object recognition, particularly object classification. In this approach, a local hill-climbing search is used in constructing good building blocks, a weight called looseness is introduced to identify the good building blocks in individual programs, and the looseness values are used as heuristics in choosing appropriate crossover points to preserve good building blocks. This approach is examined and compared with the standard crossover operator and the headless chicken crossover (HCC) method on a sequence of object classification problems. The results suggest that this approach outperforms the HCC, the standard crossover, and the standard crossover operator with hill climbing on all of these problems in terms of the classification accuracy. Although this approach spends a bit longer time than the standard crossover operator, it significantly improves the system efficiency over the HCC method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 5 )