By Topic

Optimal Linear Combination of Facial Regions for Improving Identification Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kin-Chung Wong ; Univ. of Wisconsin-Madison, Madison ; Wei-Yang Lin ; Yu Hen Hu ; Boston, N.
more authors

This paper presents a novel 3D multiregion face recognition algorithm that consists of new geometric summation invariant features and an optimal linear feature fusion method. A summation invariant, which captures local characteristics of a facial surface, is extracted from multiple subregions of a 3D range image as the discriminative features. Similarity scores between two range images are calculated from the selected subregions. A novel fusion method that is based on a linear discriminant analysis is developed to maximize the verification rate by a weighted combination of these similarity scores. Experiments on the Face Recognition Grand Challenge V2.0 dataset show that this new algorithm improves the recognition performance significantly in the presence of facial expressions.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 5 )