By Topic

Pipelined Recurrent Fuzzy Neural Networks for Nonlinear Adaptive Speech Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dimitris G. Stavrakoudis ; Aristotle Univ. of Thessaloniki, Thessaloniki ; John B. Theocharis

A class of pipelined recurrent fuzzy neural networks (PRFNNs) is proposed in this paper for nonlinear adaptive speech prediction. The PRFNNs are modular structures comprising a number of modules that are interconnected in a chained form. Each module is implemented by a small-scale recurrent fuzzy neural network (RFNN) with internal dynamics. Due to module nesting, the PRFNNs offer a number of desirable attributes, including decomposition of the modeling task, enhanced temporal processing capabilities, and multistage dynamic fuzzy inference. Tuning of the PRFNN adaptable parameters is accomplished by a series of gradient descent methods with different weighting of the modules and the decoupled extended Kalman filter (DEKF) algorithm, based on weight grouping. Extensive experimentation is carried out to evaluate the performance of the PRFNNs on the speech prediction platform. Comparative analysis shows that the PRFNNs outperform the single-RFNN models in terms of the prediction gains that are obtained and computational efficiency. Furthermore, PRFNNs provide considerably better performance compared to pipelined recurrent neural networks, for models with similar model complexity.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:37 ,  Issue: 5 )