By Topic

Developmental Word Acquisition and Grammar Learning by Humanoid Robots Through a Self-Organizing Incremental Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoyuan He ; Tokyo Inst. of Technol., Yokohama ; Ogura, T. ; Satou, A. ; Hasegawa, O.

We present a new approach for online incremental word acquisition and grammar learning by humanoid robots. Using no data set provided in advance, the proposed system grounds language in a physical context, as mediated by its perceptual capacities. It is carried out using show-and-tell procedures, interacting with its human partner. Moreover, this procedure is open-ended for new words and multiword utterances. These facilities are supported by a self-organizing incremental neural network, which can execute online unsupervised classification and topology learning. Embodied with a mental imagery, the system also learns by both top-down and bottom-up processes, which are the syntactic structures that are contained in utterances. Thereby, it performs simple grammar learning. Under such a multimodal scheme, the robot is able to describe online a given physical context (both static and dynamic) through natural language expressions. It can also perform actions through verbal interactions with its human partner.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 5 )