By Topic

Application of the Hybrid Genetic Algorithm to Combinatorial Optimization Problems in Flow-shop Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jingjing Wu ; College of Mechanical Engineering, Tongji University, Shanghai 200092, PR China; Zhangzhou Institute of Technology, Zhangzhou 363000, PR China. ; Kelin Xu ; Qinghua Kong ; Wenxian Jiang

Production scheduling has been recognized as common but challenging combinatorial problems. Because of their complexity, recent research has turned to genetic algorithms to address such problems. Although genetic algorithms have been proven to facilitate the entire space search, they lack in fine-tuning capability for obtaining the global optimum. Therefore, in this study a hybrid genetic algorithm was developed for optimization. Scheduling problems often involve more than one criterion and therefore require multicriteria analysis. Therefore a multicriteria flowshop scheduling problem with setup times is considered. The objective function of the problem is minimization of the weighted sum of total completion time, makespan, maximum tardiness and maximum earliness. An integer programming model is developed for the problem which belongs to NP-hard class. According to computational results, the hybrid genetic algorithm proposed is effective in finding problem solutions.

Published in:

2007 International Conference on Mechatronics and Automation

Date of Conference:

5-8 Aug. 2007