By Topic

An Enhanced Particle Swarm Optimization Algorithm for Multi-Modal Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kwok, N.M. ; Univ. of Technol., Sydney ; Fang, G. ; Ha, Q.P. ; Liu, D.K.

The particle swarm optimization algorithm has been frequently employed to solve various optimization problems. Although the algorithm is performing satisfactorily while tackling unit-modal optimizations, enhancements in dealing with multi-modal functions are indeed desirable. Convergence of particles to the optimum solution is a primary and traditional requirement, however, this is achieved only after all the solutions space has been covered and evaluated. In this work, the focus is directed towards maintaining sufficient divergence of particles in multi-modal problems, by developing an alternative social interaction scheme among the swarm members. Particularly, a multiple-leaders strategy is employed in the new PSO algorithm to prevent pre-mature convergence. Results from benchmark problems are included to illustrate the effectiveness of the proposed method.

Published in:

Mechatronics and Automation, 2007. ICMA 2007. International Conference on

Date of Conference:

5-8 Aug. 2007