Cart (Loading....) | Create Account
Close category search window

Accuracy Assessment of a Noninvasive Device for Monitoring Beat-by-Beat Blood Pressure in the Radial Artery Using the Volume-Compensation Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tanaka, S. ; Kanazawa Univ., Kanazawa ; Nogawa, M. ; Yamakoshi, T. ; Yamakoshi, K.

For the noninvasive and accurate measurement of instantaneous blood pressure (BP) in the radial artery, the performance of a device based on the principle of volume-compensation was assessed by comparison with simultaneous measurement of direct (invasive) radial artery pressure in nine healthy subjects. Bias and precision of systolic BP (SBP) and diastolic BP (DBP) derived from Bland-Altman plots of data from the present system and the direct method averaged -0.5 plusmn 2.1 mmHg and 0.6 plusmn 1.8 mmHg respectively, over a wide range of SBP and DBP. These results clearly indicate that, using this system, instantaneous radial artery pressure can be measured noninvasively with high accuracy.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.