By Topic

A Computational Model for C. elegans Locomotory Behavior: Application to Multiworm Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roussel, N. ; Rensselaer Polytech. Inst., Troy ; Morton, C.A. ; Finger, F.P. ; Roysam, B.

A computational approach is presented for modeling and quantifying the structure and dynamics of the nematode C. elegans observed by time-lapse microscopy. Worm shape and conformations are expressed in a decoupled manner. Complex worm movements are expressed in terms of three primitive patterns-peristaltic progression, deformation, and translation. The model has been incorporated into algorithms for segmentation and simultaneous tracking of multiple worms in a field, some of which may be interacting in complex ways. A recursive Bayesian filter is used for tracking. Unpredictable behaviors associated with interactions are resolved by multiple-hypothesis tracking. Our algorithm can track worms of diverse sizes and conformations (coiled/uncoiled) in the presence of imaging artifacts and clutter, even when worms are overlapping with others. A two-observer performance assessment was conducted over 16 image sequences representing wild-type and uncoordinated mutants as a function of worm size, conformation, presence of clutter, and worm entanglement. Overall detected tracking failures were 1.41%, undetected tracking failures were 0.41%, and segmentation errors were 1.11% of worm length. When worms overlap, our method reduced undetected failures from 12% to 1.75%, and segmentation error from 11% to 5%. Our method provides the basis for reliable morphometric and locomotory analysis of freely behaving worm populations.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 10 )