By Topic

Use of Sample Entropy Approach to Study Heart Rate Variability in Obstructive Sleep Apnea Syndrome

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Angari, H.M. ; Northwestern Univ., Evanston ; Sahakian, A.V.

Sample entropy, a nonlinear signal processing approach, was used as a measure of signal complexity to evaluate the cyclic behavior of heart rate variability (HRV) in obstructive sleep apnea syndrome (OSAS). In a group of 10 normal and 25 OSA subjects, the sample entropy measure showed that normal subjects have significantly more complex HRV pattern than the OSA subjects (p < 0.005). When compared with spectral analysis in a minute-by-minute classification, sample entropy had an accuracy of 70.3% (69.5% sensitivity, 70.8% specificity) while the spectral analysis had an accuracy of 70.4% (71.3% sensitivity, 69.9% specificity). The combination of the two methods improved the accuracy to 72.9% (72.2% sensitivity, 73.3% specificity). The sample entropy approach does not show major improvement over the existing methods. In fact, its accuracy in detecting sleep apnea is relatively low in the well classified data of the physionet. Its main achievement however, is the simplicity of computation. Sample entropy and other nonlinear methods might be useful tools to detect apnea episodes during sleep.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 10 )