By Topic

Energy-Based Nonlinear Control of Underactuated Euler–Lagrange Systems Subject to Impacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hu, G. ; Florida Univ., Gainesville ; Makkar, C. ; Dixon, W.E.

In this note, Lyapunov-based methods are used to design a class of energy-based nonlinear controllers to globally asymptotically stabilize/regulate an underactuated mechanical system subject to an impact collision. The impact model is considered as an elastic contact with finite stiffness. One of the difficulties in controlling impact is that the equations of motion are quite different when the system status changes from a noncontact condition to a contact condition. Another difficulty arises when an impact occurs with an underactuated system because the impact may lead to instabilities or excessive transients. An energy coupling approach is developed in this paper that is motivated by the desire to improve the transient response of the system. A Lyapunov stability analysis and numerical simulations are provided to demonstrate the stability and performance of the developed controllers.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 9 )