By Topic

Energy- and Entropy-Based Stabilization for Lossless Dynamical Systems via Hybrid Controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haddad, M.M. ; Georgia Inst. of Technol., Atlanta ; Chellaboina, V. ; Hui, Qing ; Nersesov, S.G.

A novel class of dynamic, energy-based hybrid controllers is proposed as a means for achieving enhanced energy dissipation in lossless dynamical systems. These dynamic controllers combine a logical switching architecture with continuous dynamics to guarantee that the system plant energy is strictly decreasing across switchings. The general framework leads to closed-loop systems described by impulsive differential equations. In addition, we construct hybrid dynamic controllers that guarantee that the closed-loop system is consistent with basic thermodynamic principles. In particular, the existence of an entropy function for the closed-loop system is established that satisfies a hybrid Clausius-type inequality. Special cases of energy-based and entropy-based hybrid controllers involving state-dependent switching are described.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 9 )