By Topic

On the Reachability Problem for Uncertain Hybrid Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan Gao ; Univ. of Shanghai for Sci. & Technol., Shanghai ; John Lygeros ; Marc Quincampoix

In this paper, we revisit the problem of designing controllers to meet safety specifications for hybrid systems, whose evolution is affected by both control and disturbance inputs. The problem is formulated as a dynamic game and an appropriate notion of hybrid strategy for the control inputs is developed. The design of hybrid strategies to meet safety specifications is based on an iteration of alternating discrete and continuous safety calculations. We show that, under certain assumptions, the iteration converges to a fixed point, which turns out to be the maximal set of states for which the safety specifications can be met. The continuous part of the calculation relies on the computation of the set of winning states for one player in a two player, two target, pursuit evasion differential game. We develop a characterization of these winning states (as well as the winning states for the other player for completeness) using methods from nonsmooth analysis and viability theory.

Published in:

IEEE Transactions on Automatic Control  (Volume:52 ,  Issue: 9 )