By Topic

A Stochastic Continuation Approach to Piecewise Constant Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Robini, M.C. ; CNRS Res. Unit, Villeurbanne ; Lachal, A. ; Magnin, I.E.

We address the problem of reconstructing a piecewise constant 3-D object from a few noisy 2-D line-integral projections. More generally, the theory developed here readily applies to the recovery of an ideal n-D signal (n ges 1) from indirect measurements corrupted by noise. Stabilization of this ill-conditioned inverse problem is achieved with the Potts prior model, which leads to a challenging optimization task. To overcome this difficulty, we introduce a new class of hybrid algorithms that combines simulated annealing with deterministic continuation. We call this class of algorithms stochastic continuation (SC). We first prove that, under mild assumptions, SC inherits the finite-time convergence properties of generalized simulated annealing. Then, we show that SC can be successfully applied to our reconstruction problem. In addition, we look into the concave distortion acceleration method introduced for standard simulated annealing and we derive an explicit formula for choosing the free parameter of the cost function. Numerical experiments using both synthetic data and real radiographic testing data show that SC outperforms standard simulated annealing.

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 10 )