By Topic

Applying CDMA Technique to Network-on-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xin Wang ; Tampere Univ. of Technol., Tampere ; Ahonen, T. ; Nurmi, J.

The issues of applying the code-division multiple access (CDMA) technique to an on-chip packet switched communication network are discussed in this paper. A packet switched network-on-chip (NoC) that applies the CDMA technique is realized in register-transfer level (RTL) using VHDL. The realized CDMA NoC supports the globally-asynchronous locally-synchronous (GALS) communication scheme by applying both synchronous and asynchronous designs. In a packet switched NoC, which applies a point-to-point connection scheme, e.g., a ring topology NoC, data transfer latency varies largely if the packets are transferred to different destinations or to the same destination through different routes in the network. The CDMA NoC can eliminate the data transfer latency variations by sharing the data communication media among multiple users concurrently. A six-node GALS CDMA on-chip network is modeled and simulated. The characteristics of the CDMA NoC are examined by comparing them with the characteristics of an on-chip bidirectional ring topology network. The simulation results reveal that the data transfer latency in the CDMA NoC is a constant value for a certain length of packet and is equivalent to the best case data transfer latency in the bidirectional ring network when data path width is set to 32 bits.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 10 )