By Topic

A Robot and Control Algorithm That Can Synchronously Assist in Naturalistic Motion During Body-Weight-Supported Gait Training Following Neurologic Injury

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Aoyagi, D. ; Los Amigos Res. & Educ. Inst., Downey ; Ichinose, W.E. ; Harkema, S.J. ; Reinkensmeyer, D.J.
more authors

Locomotor training using body weight support on a treadmill and manual assistance is a promising rehabilitation technique following neurological injuries, such as spinal cord injury (SCI) and stroke. Previous robots that automate this technique impose constraints on naturalistic walking due to their kinematic structure, and are typically operated in a stiff mode, limiting the ability of the patient or human trainer to influence the stepping pattern. We developed a pneumatic gait training robot that allows for a full range of natural motion of the legs and pelvis during treadmill walking, and provides compliant assistance. However, we observed an unexpected consequence of the devices compliance: unimpaired and SCI individuals invariably began walking out-of-phase with the device. Thus, the robot perturbed rather than assisted stepping. To address this problem, we developed a novel algorithm that synchronizes the device in real-time to the actual motion of the individual by sensing the state error and adjusting the replay timing to reduce this error. This paper describes data from experiments with individuals with SCI that demonstrate the effectiveness of the synchronization algorithm, and the potential of the device for relieving the trainers of strenuous work while maintaining naturalistic stepping.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 3 )