By Topic

Exact Reconstruction of Sparse Signals via Nonconvex Minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chartrand, R. ; Los Alamos Nat. Lab., Los Alamos

Several authors have shown recently that It is possible to reconstruct exactly a sparse signal from fewer linear measurements than would be expected from traditional sampling theory. The methods used involve computing the signal of minimum lscr1 norm among those having the given measurements. We show that by replacing the lscr1 norm with the lscrp norm with p < 1, exact reconstruction is possible with substantially fewer measurements. We give a theorem in this direction, and many numerical examples, both in one complex dimension, and larger-scale examples in two real dimensions.

Published in:

Signal Processing Letters, IEEE  (Volume:14 ,  Issue: 10 )