Cart (Loading....) | Create Account
Close category search window
 

Content-Based Image Retrieval by Feature Adaptation and Relevance Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The paper proposes an adaptive retrieval approach based on the concept of relevance-feedback, which establishes a link between high-level concepts and low-level features, using the user's feedback not only to assign proper weights to the features, but also to dynamically select them within a large collection of parameters. The target is to identify a set of relevant features according to a user query while at the same time maintaining a small sized feature vector to attain better matching and lower complexity. To this end, the image description is modified during each retrieval by removing the least significant features and better specifying the most significant ones. The feature adaptation is based on a hierarchical approach. The weights are then adjusted based on previously retrieved relevant and irrelevant images without further user-feedback. The algorithm is not fixed to a given feature set. It can be used with different hierarchical feature sets, provided that the hierarchical structure is defined a priori. Results achieved on different image databases and two completely different feature sets show that the proposed algorithm outperforms previously proposed methods. Further, it is experimentally demonstrated that it approaches the results obtained by state-of-the-art feature-selection techniques having complete knowledge of the data set.

Published in:

Multimedia, IEEE Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.