By Topic

Empirical Analysis of Software Fault Content and Fault Proneness Using Bayesian Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We present a methodology for Bayesian analysis of software quality. We cast our research in the broader context of constructing a causal framework that can include process, product, and other diverse sources of information regarding fault introduction during the software development process. In this paper, we discuss the aspect of relating internal product metrics to external quality metrics. Specifically, we build a Bayesian network (BN) model to relate object-oriented software metrics to software fault content and fault proneness. Assuming that the relationship can be described as a generalized linear model, we derive parametric functional forms for the target node conditional distributions in the BN. These functional forms are shown to be able to represent linear, Poisson, and binomial logistic regression. The models are empirically evaluated using a public domain data set from a software subsystem. The results show that our approach produces statistically significant estimations and that our overall modeling method performs no worse than existing techniques.

Published in:

IEEE Transactions on Software Engineering  (Volume:33 ,  Issue: 10 )