By Topic

Efficient Process of Top-k Range-Sum Queries over Multiple Streams with Minimized Global Error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Due to the resource limitation in the data stream environments, it has been reported that answering user queries according to the wavelet synopsis of a stream is an essential ability of a Data Stream Management System (DSMS). In the literature, recent research has been elaborated upon minimizing the local error metric of an individual stream. However, many emergent applications, such as stock marketing and sensor detection, also call for the need of recording multiple streams in a commercial DSMS. As shown in our thorough analysis and experimental studies, minimizing global error in multiple-stream environments leads to good reliability for DSMS to answer the queries; in contrast, only minimizing local error may lead to significant loss of query accuracy. As such, we first study in this paper the problem of maintaining the wavelet coefficients of multiple streams within collective memory so that the predetermined global error metric is minimized. Moreover, we also examine a promising application in the multistream environment, i.e., the queries for top-k range sum. We resolve the problem of efficient top-k query processing with minimized global error by developing a general framework. For the purposes of maintaining the wavelet coefficients and processing top-k queries, several well-designed algorithms are utilized to optimize the performance of each primary component of this general framework. We also evaluate the proposed algorithms empirically on real and simulated data streams and show that our framework can process top-k queries accurately and efficiently.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:19 ,  Issue: 10 )