By Topic

Efficiently Querying Large XML Data Repositories: A Survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gang Gou ; North Carolina State Univ., Raleigh ; Rada Chirkova

Extensible markup language (XML) is emerging as a de facto standard for information exchange among various applications on the World Wide Web. There has been a growing need for developing high-performance techniques to query large XML data repositories efficiently. One important problem in XML query processing is twig pattern matching, that is, finding in an XML data tree D all matches that satisfy a specified twig (or path) query pattern Q. In this survey, we review, classify, and compare major techniques for twig pattern matching. Specifically, we consider two classes of major XML query processing techniques: the relational approach and the native approach. The relational approach directly utilizes existing relational database systems to store and query XML data, which enables the use of all important techniques that have been developed for relational databases, whereas in the native approach, specialized storage and query processing systems tailored for XML data are developed from scratch to further improve XML query performance. As implied by existing work, XML data querying and management are developing in the direction of integrating the relational approach with the native approach, which could result in higher query processing performance and also significantly reduce system reengineering costs.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:19 ,  Issue: 10 )