By Topic

Gradient Boundary Detection for Time Series Snapshot Construction in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jie Lian ; Univ. of Waterloo, Waterloo ; Lei Chen ; Naik, K. ; Yunhao Liu
more authors

In many applications of sensor networks, the sink needs to keep track of the history of sensed data of a monitored region for scientific analysis or supporting historical queries. We call these historical data a time series of value distributions or snapshots. Obviously, to build the time series snapshots by requiring all of the sensors to transmit their data to the sink periodically is not energy efficient. In this paper, we introduce the idea of gradient boundary and propose the gradient boundary detection (GBD) algorithm to construct these time series snapshots of a monitored region. In GBD, a monitored region is partitioned into a set of subregions and all sensed data in one subregion are within a predefined value range, namely, the gradient interval. Sensors located on the boundaries of the subregions are required to transmit the data to the sink and, then, the sink recovers all subregions to construct snapshots of the monitored area. In this process, only the boundary sensors transmit their data and, therefore, energy consumption is greatly reduced. The simulation results show that GBD is able to build snapshots with a comparable accuracy and has up to 40 percent energy savings compared with the existing approaches for large gradient intervals.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 10 )