By Topic

A Quorum-Based Group Mutual Exclusion Algorithm for a Distributed System with Dynamic Group Set

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ranganath Atreya ; Univ. of Texas at Dallas, Dallas ; Neeraj Mittal ; Sathya Peri

The group mutual exclusion problem extends the traditional mutual exclusion problem by associating a type (or a group) with each critical section. In this problem, processes requesting critical sections of the same type can execute their critical sections concurrently. However, processes requesting critical sections of different types must execute their critical sections in a mutually exclusive manner. We present a distributed algorithm for solving the group mutual exclusion problem based on the notion of surrogate-quorum. Intuitively, our algorithm uses the quorum that has been successfully locked by a request as a surrogate to service other compatible requests for the same type of critical section. Unlike the existing quorum-based algorithms for group mutual exclusion, our algorithm achieves a low message complexity of O(q) and a low (amortized) bit-message complexity of O(bqr), where q is the maximum size of a quorum, b is the maximum number of processes from which a node can receive critical section requests, and r is the maximum size of a request while maintaining both synchronization delay and waiting time at two message hops. As opposed to some existing quorum-based algorithms, our algorithm can adapt without performance penalties to dynamic changes in the set of groups. Our simulation results indicate that our algorithm outperforms the existing quorum-based algorithms for group mutual exclusion by as much as 45 percent in some cases. We also discuss how our algorithm can be extended to satisfy certain desirable properties such as concurrent entry and unnecessary blocking freedom.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:18 ,  Issue: 10 )