By Topic

Automatic Verification of Arithmetic Circuits in RTL Using Stepwise Refinement of Term Rewriting Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper presents a novel technique for proving the correctness of arithmetic circuit designs described at the register transfer level (RTL). The technique begins with the automatic translation of circuits from a Verilog RTL description into a term rewriting system (TRS). We prove the correctness of the designs via an equivalence proof between TRSs for the implementation circuit design and a much simpler specification circuit design. We present this notion of equivalence between the TRSs and a stepwise refinement method for its decomposition, which we leverage in our tool Verifire. We demonstrate the effectiveness of our technique by using the tool for the verification of several multiplier designs that have hitherto been impossible to verify with existing approaches and tools.

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 10 )