By Topic

Combinatorial Reverse Auction based Scheduling in Multi-Rate Wireless Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pal, S. ; Texas Univ., Arlington ; Kundu, S.R. ; Chatterjee, M. ; Das, S.K.

Opportunistic scheduling algorithms are effective in exploiting channel variations and maximizing system throughput in multirate wireless networks. However, most scheduling algorithms ignore the per-user quality-of-service (QoS) requirements and try to allocate resources (for example, the time slots) among multiple users. This leads to a phenomenon commonly referred to as the exposure problem, wherein the algorithms fail to satisfy the minimum slot requirements of the users due to substitutability and complementarity requirements of user slots. To eliminate this exposure problem, we propose a novel scheduling algorithm based on two-phase combinatorial reverse auction, with the primary objective of maximizing the number of satisfied users in the system. We also consider maximizing the system throughput as a secondary objective. In the proposed scheme, multiple users bid for the required number of time slots and the allocations are done to satisfy the two objectives in a sequential manner. We provide an approximate solution to the proposed scheduling problem, which is NP-complete. The proposed algorithm has an approximation ratio of (1 + log m) with respect to the optimal solution, where m is the number of slots in a schedule cycle. Simulation results are provided to compare the proposed scheduling algorithm with other competitive schemes.

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 10 )