By Topic

Mixed-Radix Gray Codes in Lee Metric

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anantha, M. ; Oregon State Univ., Corvallis ; Bose, B. ; AlBdaiwi, B.F.

Gray codes, where two consecutive codewords differ in exactly one position by plusmn1, are given. In a single-radix code, all dimensions have the same base, say, kappa, whereas, in a mixed-radix code, the base in one dimension can be different from the base in another dimension. Constructions of new classes of mixed-radix Gray codes are presented. It is shown how these codes can be used as a basis for constructing edge-disjoint Hamiltonian cycles in mixed-radix toroidal networks when the number of dimensions n = 2r for some r ges 0. Efficient algorithms for the generation of these codes are then shown.

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 10 )