Cart (Loading....) | Create Account
Close category search window

New Method for Detecting Low Current Faults in Electrical Distribution Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zamora, I. ; Univ. of the Basque Country, Bilbao ; Mazon, A.J. ; Sagastabeitia, K.J. ; Zamora, J.J.

In electrical distribution systems, low current faults may be caused by a high impedance fault or by the fault current limitation caused by the neutral to ground connection. In the former case, an indirect contact or insulation degradation give a high value of the fault impedance. In the latter, the neutral grounding may be either isolated or compensated. Nevertheless, these types of faults do not produce enough current so that the traditional overcurrent relays or fuses are not able to detect the fault. This paper presents a new methodology, based on the superposition of voltage signals of certain frequency, for the detection of low current single phase faults in radial distribution systems. The simulation analysis and laboratory tests carried out have proved the validity of the methodology for any type of grounding method.

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 4 )

Date of Publication:

Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.