By Topic

Fault Direction Estimation in Radial Distribution System Using Phase Change in Sequence Current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pradhan, A.K. ; Indian Inst. of Technol., Kharagpur ; Routray, A. ; Madhan Gudipalli, S.

When a remotely sited wind farm is connected to the utility power system through a distribution line, the overcurrent relay at the common coupling point needs a directional feature. This paper presents a method for estimating the direction of fault in such radial distribution systems using phase change in current. The difference in phase angle between the positive-sequence component of the current during fault and prefault conditions has been found to be a good indicator of the fault direction in a three-phase system. A rule base formed for the purpose decides the location of fault with respect to the relay in a distribution system. Such a strategy reduces the cost of the voltage sensor and/or connection for a protection scheme which is of relevance in emerging distributed-generation systems. The algorithm has been tested through simulation for different radial distribution systems.

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 4 )