By Topic

Analysis of the Combined Effects of Load Cycling, Thermal Transients, and Electrothermal Stress on Life Expectancy of High-Voltage AC Cables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mazzanti, G. ; Univ. of Bologna, Bologna

In this paper, a procedure is presented for the life estimation of high-voltage cables subjected to electrothermal stress due to applied voltage and load cycles. Thermal transients that affect cable insulation as a consequence of cyclic current variations are modeled by means of the well-known CIGRE two-loop thermal network analog. The effect of the relevant cyclically varying electrothermal stress is accounted for via the cumulative damage law of Miner. The life fractions lost during each step of the load cycle are evaluated by resorting to a proper combined electrothermal life model holding for cable insulation. The model is considered within its due probabilistic framework for associating life with residual reliability and failure probability. The procedure is applied to high-voltage ac EPR- and XLPE-insulated cables, subjected to stepwise-constant daily load cycles. The application shows that life is very sensitive to load cycles, as well as to thermal transients and to the synergism between electrical and thermal stress. Thus, none of these factors should be neglected for an accurate estimate of life expectancy of high-voltage cables in real service conditions.

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 4 )