By Topic

A New Approach to Control DVR Based on Symmetrical Components Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marei, M.I. ; Ain Shams Univ., Cairo ; El-Saadany, E.F. ; Salama, M.M.A.

The dynamic voltage restorer (DVR) is an effective solution for power quality problems related to voltage. One of the most common control algorithms that are used for the DVR is the symmetrical components method. This paper introduces a new approach for the estimation of the symmetrical components. A modified delta rule structure is proposed and developed which is capable of dealing with multioutput systems for the parameters estimation. An innovative feedforward control, based on the new delta rule structure, is proposed for the series compensator not only to compensate for the zero and negative sequence components, but also to regulate the positive sequence component at the nominal load voltage. One advantage of the proposed control scheme is its insensitivity to parameter variation, a necessity for the series compensator. Experimental verification of the new delta rule algorithm, by using a DSP, is provided. Numerical simulations of the proposed control strategy are conducted to show the robustness, high accuracy, and fast dynamic performance of this novel control algorithm.

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 4 )