By Topic

Co-Induced Low-Temperature Silicidation of Ni Germanosilicide Using NiPt Alloy and the Effect of Ge Ratio on Thermal Stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)

In this paper, novel Ni germanosilicide technology using NiPt alloy and Co overlayer has been proposed. Using the Co overlayer after NiPt deposition on Si1-xGex, the formation temperature of low resistive Ni germanosilicide is lowered with high thermal stability. The thermal stability of Ni germanosilicide with different Ge fraction in is also characterized. The sheet resistance degrades as increasing the Ge fraction (x) in Si1-xGex when NiPt/TiN is used. However, using the Co overlayer, the sheet resistance property among Ni germanosilicide formed with different Ge fraction is improved greatly compared with those of NiPt/TiN case (without Co overlayer). Therefore, low-temperature formation of highly thermal robust Ni germanosilicide can be achieved through the NiPt/Co/TiN tri-layer.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 5 )