Cart (Loading....) | Create Account
Close category search window

Three-Dimensional Simulation of One-Dimensional Transport in Silicon Nanowire Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fiori, G. ; Univ. di Pisa, Pisa ; Iannaccone, G.

We present a simulation study of silicon nanowire transistors, based on an in-house code providing the self-consistent solution of Poisson, Schrodinger, and continuity equations on a generic three-dimensional domain. The main assumption, based on the very small nanowire cross section considered, is that an adiabatic approximation can be applied to the Schrodinger equation, so that transport occurs along one-dimensional sub- bands. Different subband transport models are considered, such as ballistic transport, either including quantum tunneling or not, and drift-diffusion. We show that nanowire transistors exhibit good control of short channel effects, and that barrier tunneling is significant in the strong inversion regime even for longer devices, while it is significant in subthreshold only for the shortest channel lengths. Finally, we show that a subband-based transport model allows to reach a very good trade off between physical accuracy of the simulation and computing time.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 5 )

Date of Publication:

Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.