By Topic

Design of a Flexible Control Platform for Soft-Switching Multilevel Inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In modern high-power medium voltage drives, multilevel converters are increasingly used. Employing slight topological modifications, soft-switching technology can be applied to multilevel converters to reduce the switching losses. As a result, the switching frequency can be increased, thereby reducing the output filter size. However, common converter controls have to be modified. In this paper, a flexible control platform is presented that allows rapid prototyping of soft-switching topologies. An analysis of different auxiliary resonant commutated pole (ARCP) topologies shows that all switching commands can be synthesized with synchronized signals of two-level ARCP converters. Therefore, a flexible state-machine for two-level converters was developed first, which can also be used to build controls for multilevel topologies. It supports drivers with built-in intelligence as well as the control of additional switches that are required in some ARCP neutral-point-clamped (NPC) topologies. The switching commands for the state machines can be generated by standard multilevel modulation methods. Illegal switching states are filtered and multiple simultaneous commutations per phase are prevented for ARCP NPC converters. To verify the functionality, the control scheme was realized in a field programmable gate array and a completely modular test converter was developed. This test converter can be used to quickly implement all common multilevel topologies and test different modulation strategies. Experimental results are presented in this paper.

Published in:

IEEE Transactions on Power Electronics  (Volume:22 ,  Issue: 5 )