By Topic

Incremental Diagnosis Method for Intelligent Wearable Sensor Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wu, W.H. ; California Univ., Los Angeles ; Bui, A.A.T. ; Batalin, M.A. ; Liu, D.
more authors

This paper presents an incremental diagnosis method (IDM) to detect a medical condition with the minimum wearable sensor usage by dynamically adjusting the sensor set based on the patient's state in his/her natural environment. The IDM, comprised of a naive Bayes classifier generated by supervised training with Gaussian clustering, is developed to classify patient motion in- context (due to a medical condition) and in real-time using a wearable sensor system. The IDM also incorporates a utility function, which is a simple form of expert knowledge and user preferences in sensor selection. Upon initial in-context detection, the utility function decides which sensor is to be activated next. High-resolution in-context detection with minimum sensor usage is possible because the necessary sensor can be activated or requested at the appropriate time. As a case study, the IDM is demonstrated in detecting different severity levels of a limp with minimum usage of high diagnostic resolution sensors.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:11 ,  Issue: 5 )