By Topic

Early DoS Attack Detection using Smoothened Time-Series andWavelet Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pravin Shinde ; CDAC, Mumbai, India ; Srinivas Guntupalli

Denial of Service (DoS) attacks are ubiquitous to computer networks. Flood based attacks are a common class of DoS attacks. DoS detection mechanisms that aim at detecting floods mainly look for sudden changes in the traffic and mark them anomalous. In this paper, we propose a method that considers the traffic in a network as a time-series and smoothens it using exponential moving average and analyzes the smoothened wave using energy distribution based on wavelet analysis. The parameters we used to represent the traffic are number of bytes received per unit time and the proportion between incoming and outgoing bytes. By analyzing the energy distribution in the wavelet form of a smoothened time-series, growth in the traffic, which is the result of a DoS attack can be detected very early. As the parameters we considered represent different properties of the network, the accuracy of the detection will be very high and with less false positives.

Published in:

Third International Symposium on Information Assurance and Security

Date of Conference:

29-31 Aug. 2007