Cart (Loading....) | Create Account
Close category search window
 

Spectral Efficiency in Single-Hop Ad-Hoc Wireless Networks with Interference Using Adaptive Antenna Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Govindasamy, S. ; Massachusetts Inst. of Technol., Cambridge ; Bliss, D.W. ; Staelin, D.H.

Receivers with N antennas in single-hop, ad-hoc wireless networks with nodes randomly distributed on an infinite plane with uniform area density are studied. Transmitting nodes have single antennas and transmit simultaneously in the same frequency band with power P that decays with distance via the commonly-used inverse-polynomial model with path-loss- exponent (PLE) greater than 2. This model applies to shared spectrum systems where multiple links share the same frequency band. In the interference-limited regime, the average spectral efficiency of a representative link E[C] (b/s/Hz/link) is found to grow as log(N) and linearly with PLE, and its variance decays as 1/N. The average signal-to-interference-plus-noise-ratio (SINR) on a representative link is found to grow faster than linearly with N. With multiple-input-multiple-output (MIMO) links where transmit nodes have multiple antennas without Channel- State-Information, it is found that E[C] in the network can be improved if nodes transmit using the optimum number of antennas compared to the optimum selfish strategy of transmitting equal-power streams from every antenna. The results are extended to random code-division-multiple-access systems where the optimum spreading factor for a given link length is found. These results are developed as asymptotic expressions using infinite random matrix theory and are validated by Monte-Carlo simulations.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 7 )

Date of Publication:

September 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.