By Topic

Contour evolution scheme for variational image segmentation and smoothing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

An algorithm, based on the Mumford-Shah (M-S) functional, for image contour segmentation and object smoothing in the presence of noise is proposed. However, in the proposed algorithm, contour length minimisation is not required and it is demonstrated that the M-S functional without contour length minimisation becomes an edge detector. Optimisation of this nonlinear functional is based on the method of calculus of variations, which is implemented by using the level set method. Fourier and Legendre's series are also employed to improve the segmentation performance of the proposed algorithm. The segmentation results clearly demonstrate the effectiveness of the proposed approach for images with low signal-to-noise ratios.

Published in:

Image Processing, IET  (Volume:1 ,  Issue: 3 )